References
Abaimov, S., & Martellini, M. (2020). Artificial Intelligence in Autonomous Weapon Systems. In M. Martellini & R. Trapp (Eds.), 21st Century Prometheus: Managing CBRN Safety and Security Affected by Cutting-Edge Technologies (pp. 141–177). Springer International Publishing. https://doi.org/10.1007/978-3-030-28285-1_8
Alhudhaif, A., Saeed, A., Imran, T., Kamran, M., S. Alghamdi, A., O. Aseeri, A., & Alsubai, S. (2022). A Particle Swarm Optimization Based Deep Learning Model for Vehicle Classification. Computer Systems Science and Engineering, 40(1), 223–235. https://doi.org/10.32604/csse.2022.018430
Ali, L., Alnajjar, F., Jassmi, H. A., Gocho, M., Khan, W., & Serhani, M. A. (2021). Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures. Sensors, 21(5), 1688. https://doi.org/10.3390/s21051688
Amoroso, D. and Tamburrini, G. (2020). Autonomous Weapons Systems and Meaningful Human Control: Ethical and Legal Issues. Current Robotics Reports 1, no. 4 (December 1, 2020): 187–94. https://doi.org/10.1007/s43154-020-00024-3.
Bhatt, A., & Ganatra, A. (2022). Explosive Weapons and Arms Detection with Singular Classification (WARDIC) on Novel Weapon Dataset using Deep Learning: Enhanced OODA Loop. Engineered Science, Volume 20 (December 2022), 252–266. https://doi.org/10.30919/es8e718
Bezdan, T., & Bačanin Džakula, N. (2019). Convolutional Neural Network Layers and Architectures. Proceedings of the International Scientific Conference - Sinteza 2019, 445–451. https://doi.org/10.15308/Sinteza-2019-445-451
Billing, D. C., Fordy, G. R., Friedl, K. E., & Hasselstrøm, H. (2021). The implications of emerging technology on military human performance research priorities. Journal of Science and Medicine in Sport, 24(10), 947–953. https://doi.org/10.1016/j.jsams.2020.10.007
Clark, M., Allen, C., Keegan, T., Meinhart, R., Wong, L., & Reed, G. (2010). Strategic leadership primer (p. 0071). S. J. Gerras (Ed.). Department of Command, Leadership and Management, US Army War College. https://doi.org/10.1037/e660342010-001
Davis, S. I. (2022). Artificial intelligence at the operational level of war. Defense & Security Analysis, 38(1), 74–90. https://doi.org/10.1080/14751798.2022.2031692
Defense Security Cooperation Agency. (2018). “Chapter 3 | Defense Security Cooperation Agency.” Accessed October 14, 2023. https://samm.dsca.mil/chapter/chapter-3.
Diggelen, J, van den Bosch, K., Neerincx, M., and Steen, M. Designing for Meaningful Human Control in Military Human-Machine Teams. arXiv, May 12, 2023. https://doi.org/10.48550/arXiv.2305.11892.
Elder, H., Shank, D., Canfield, C., Rieger, T., & Hines, C. (2022). Knowing When to Pass: The Effect of AI Reliability in Risky Decision Contexts. Human factors, https://doi.org/10.1177/00187208221100691
“Ethic Noun – Definition, Pictures, Pronunciation and Usage Notes | Oxford Advanced American Dictionary at OxfordLearnersDictionaries.Com.” Accessed October 11, 2023. https://www.oxfordlearnersdictionaries.com/us/definition/american_english/ethic.
Euromaidan Press. “Ukraine Uses Drones Equipped with AI to Destroy Military Targets,” October 6, 2023. https://euromaidanpress.com/2023/10/06/ukraine-uses-drones-equipped-with-ai-to-destroy-military-targets/.
Feng, S., Ji, K., Zhang, L., Ma, X., & Kuang, G. (2021). SAR Target Classification Based on Integration of ASC Parts Model and Deep Learning Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10213–10225. https://doi.org/10.1109/JSTARS.2021.3116979
Gilman, D., Nichols, R., & Totman, P. J. C. (2014). Foreign military sales. Defense Security Cooperation Agency. http://www. dsca. mil/sites/default/files/final-fms-dcs_30_sep. pdf.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (arXiv:1704.04861). arXiv. http://arxiv.org/abs/1704.04861
Ismail, N. S. A., & Benlahcene, A. (2018). A Narrative Review Of Ethics Theories: Teleological & Deontological Ethics. IOSR Journal Of Humanities And Social Science (IOSR-JHSS). 23, 31–38. https://doi.org/10.9790/0837-2307063138
Janakiramaiah, B., Kalyani, G., Karuna, A., Prasad, L. V. N., & Krishna, M. (2021). Military object detection in defense using multi-level capsule networks. Soft Computing, 27(2), 1045–1059. https://doi.org/10.1007/s00500-021-05912-0
Jug, J., Lampe, A., Štruc, V., & Peer, P. (2022). Body Segmentation Using Multi-task Learning (arXiv:2212.06550). arXiv. http://arxiv.org/abs/2212.06550
Kania, E., (2019). Chinese Military Innovation in the AI Revolution. The RUSI Journal. 164(5-6), 26-34. https://doi.org/10.1080/03071847.2019.1693803
Kant, I. Groundwork for the Metaphysics of Morals. Edited by Thomas E. Hill and Arnulf Zweig. New York: Oxford University Press, 1785.
Kong, L., Wang, J., & Zhao, P. (2022). YOLO-G: A Lightweight Network Model for Improving the Performance of Military Targets Detection. IEEE Access, 10, 55546–55564. https://doi.org/10.1109/ACCESS.2022.3177628
Layton, P. (2021). Fighting Artificial Intelligence Battles Operational Concepts for Future AI-Enabled Wars.
Lesinski, G., Corns, S. M., & Dagli, C. H. (2016). A fuzzy genetic algorithm approach to generate and assess meta-architectures for non-line of site fires battlefield capability. 2016 IEEE Congress on Evolutionary Computation (CEC), 2395–2401. https://doi.org/10.1109/CEC.2016.7744085
Li, H., Yu, L., Zhang, J., & Lyu, M. (2022). Fusion Deep Learning and Machine Learning for Heterogeneous Military Entity Recognition. Wireless Communications and Mobile Computing, 2022, e1103022. https://doi.org/10.1155/2022/1103022
Lin, Z., Ye, H., Zhan, B., & Huang, X. (2020). An Efficient Network for Surface Defect Detection. Applied Sciences, 10(17), 6085. https://doi.org/10.3390/app10176085
Liu, Y., Yu, Y., Wang, L., Nyima, T., Zhaxi, N., Huang, H., & Deng, Q. (2020). Classification of Tank Images Using Convolutional Neural Network. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 210–214. https://doi.org/10.1109/ITNEC48623.2020.9085151
Löhr, G. “If Conceptual Engineering Is a New Method in the Ethics of AI, What Method Is It Exactly?” AI and Ethics, May 16, 2023. https://doi.org/10.1007/s43681-023-00295-4.
Ma, Q., Li, S., & Cottrell, G. W. (2022). Adversarial Joint-Learning Recurrent Neural Network for Incomplete Time Series Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 1765–1776. https://doi.org/10.1109/TPAMI.2020.3027975
Majumder, U. K., Blasch, E. P., & Garren, D. A. (2020). Deep Learning for Radar and Communications Automatic Target Recognition. Artech House.
Mission Command. (n.d.). Retrieved April 27, 2024, from https://www.moore.army.mil/Infantry/DoctrineSupplement/ATP3-21.8/appendix_b/DirectFireControl/FireControlMeasures/index.html
Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J., & Fernández-Leal, Á. (2023). Human-in-the-loop machine learning: A state of the art. Artificial Intelligence Review, 56(4), 3005–3054. https://doi.org/10.1007/s10462-022-10246-w
Neupane, D., & Seok, J. (2020). A Review on Deep Learning-Based Approaches for Automatic Sonar Target Recognition. Electronics, 9(11), Article 11. https://doi.org/10.3390/electronics9111972
Oh, J., & Kim, M. (2021). PeaceGAN: A GAN-Based Multi-Task Learning Method for SAR Target Image Generation with a Pose Estimator and an Auxiliary Classifier. Remote Sensing, 13(19), Article 19. https://doi.org/10.3390/rs13193939
Oveis, A. H., Giusti, E., Ghio, S., & Martorella, M. (2022). Moving and Stationary Targets Separation in SAR Signal Domain Using Parallel Convolutional Autoencoders with RPCA Loss. 2022 IEEE Radar Conference (RadarConf22), 1–6. https://doi.org/10.1109/RadarConf2248738.2022.9764168
Özmen, M., Aksoy, B. (2023), An Example Application for An Identification of Friend and Foe (IFF) System Appropriate for Unmanned Aerial Vehicles (UAV) Based on Deep Learning. J Intell Robot Syst 107, 36 (2023). https://doi.org/10.1007/s10846-023-01840-3
Schwartz, P. J., O’Neill, D. V., Bentz, M. E., Brown, A., Doyle, B. S., Liepa, O. C., Lawrence, R., & Hull, R. D. (2020). AI-enabled wargaming in the military decision making process. Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II, 11413, 118–134. https://doi.org/10.1117/12.2560494
Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition (arXiv:1409.1556). arXiv. http://arxiv.org/abs/1409.1556
Taddeo, M., & Blanchard, A. (2023). A Comparative Analysis of the Definitions of Autonomous Weapons. In F. Mazzi (Ed.), The 2022 Yearbook of the Digital Governance Research Group (pp. 57–79). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-28678-0_6
Tamboli, S., Jagadale, K., Mandavkar, S., Katkade, N., & Ruprah, T. S. (2023). A Comparative Analysis of Weapons Detection Using Various Deep Learning Techniques. 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), 1141–1147. https://doi.org/10.1109/ICOEI56765.2023.10125710
Transfer learning and fine-tuning | TensorFlow Core. (2024). TensorFlow. Retrieved April 27, 2024, from https://www.tensorflow.org/tutorials/images/transfer_learning
United States Army Maneuver Center of Excellence (MCoE). (2024). Infantry Platoon and Squad (ATP 3-21.8). Retrieved from https://armypubs.army.mil/epubs/DR_pubs/DR_a/ARN40007-ATP_3-21.8-000-WEB-1.pdf.
U.S. Department of Defense. (2023). Department of Defense Law of War Manual.
U.S. Department of Defense. (2020, February 24). Ethical principles for artificial intelligence – ai.mil. Ethical Principles for Artificial Intelligence. https://www.ai.mil/docs/Ethical_Principles_for_Artificial_Intelligence.pdf
Vincze, V. (2020). The USS Vincennes incident: A case study involving Autonomous Weapon Systems. Honvédségi Szemle – Hungarian Defence Review, 148(2), Article 2. 92-101. https://doi.org/10.35926/HDR.2020.2.6
When to use Convolutional Neural Networks (CNN)?. OpenGenusIQ. Retrieved March 26, 2024, from https://iq.opengenus.org/when-to-use-convolutional-neural-network-cnn/
Wu, J., Huang, Z., Hu, Z., & Lv, C. (2023). Toward Human-in-the-Loop AI: Enhancing Deep Reinforcement Learning via Real-Time Human Guidance for Autonomous Driving. Engineering, 21, 75–91. https://doi.org/10.1016/j.eng.2022.05.017
Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., & He, L. (2022). A survey of human-in-the-loop for machine learning. Future Generation Computer Systems, 135, 364–381. https://doi.org/10.1016/j.future.2022.05.014
Zhang, Y., Dai, Z., Zhang, L., Wang, Z., Chen, L., & Zhou, Y. (2020). Application of Artificial Intelligence in Military: From Projects View. 2020 6th International Conference on Big Data and Information Analytics (BigDIA), 113–116. https://doi.org/10.1109/BigDIA51454.2020.00026
Zhao, B., Wang, C., Fu, Q., & Han, Z. (2021). A Novel Pattern for Infrared Small Target Detection With Generative Adversarial Network. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 4481–4492. https://doi.org/10.1109/TGRS.2020.3012981
Zhuang, X., Li, D., Wang, Y., & Li, K. (2024). Military target detection method based on EfficientDet and Generative Adversarial Network. Engineering Applications of Artificial Intelligence, 132, 107896. https://doi.org/10.1016/j.engappai.2024.107896