References
Agarwal, S., Pape, L. E., Dagli, C. H., Ergin, N. K., Enke, D., Gosavi, A., ... & Gottapu, R. D. (2015). Flexible and intelligent learning architectures for SoS (FILA-SoS): Architectural evolution in systems-of-systems. Procedia Computer Science, 44, 76-85.
Caetano, L. F., & Teixeira, P. F. (2013). Availability approach to optimizing railway track renewal operations. Journal of Transportation Engineering, 139(9), 941-948.
Coello, C. C. (2006). Evolutionary multi-objective optimization: a historical view of the field. IEEE computational intelligence magazine, 1(1), 28-36.
Corne, D. W., Knowles, J. D., & Oates, M. J. (2000, September). The Pareto envelope-based selection algorithm for multiobjective optimization. In International conference on parallel problem solving from nature (pp. 839-848). Springer, Berlin, Heidelberg.
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International Conference on Parallel Problem Solving From Nature (pp. 849-858). Springer, Berlin, Heidelberg.
Diaz-Dorado, E., Cidrás, J., & Míguez, E. (2002). Application of evolutionary algorithms for the planning of urban distribution networks of medium voltage. IEEE Transactions on Power Systems, 17(3), 879-884.
Dojutrek, M. S., Labi, S., & Dietz, J. E. (2015). A fuzzy approach for assessing transportation infrastructure security. In Complex Systems Design & Management (pp. 207-224). Springer.
Eiben, Á. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. IEEE Transactions on evolutionary computation, 3(2), 124-141.
Gunduz, M., Nielsen, Y., & Ozdemir, M. (2013). Fuzzy assessment model to estimate the probability of delay in Turkish construction projects. Journal of Management in Engineering, 31(4), 04014055.
Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal design. Structural optimization, 4(2), 99-107.
Ishibuchi, H., & Murata, T. (1998). A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28(3), 392-403.
Ishibuchi, H., & Murata, T. (1996, May). Multi-objective genetic local search algorithm. In Evolutionary Computation, 1996., Proceedings of IEEE International Conference on (pp. 119-124). IEEE.
Kirstukas, S. J., Bryden, K. M., & Ashlock, D. A. (2005). A hybrid genetic programming approach for the analytical solution of differential equations. International Journal of General Systems, 34(3), 279-299.
Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007.
Lévi, D. (2001, November). Optimization of track renewal policy. In World Congress on Railway Research, Cologne.
Lidén, T. (2015). Railway infrastructure maintenance-a survey of planning problems and conducted research. Transportation Research Procedia, 10, 574-583. [5] D. Lévi, "Optimization of track renewal policy," World Congress on Railway Research, Cologne. 2001.
Martland, C. D., McNeil, S., Acharya, D., Mishalani, R., & Eshelby, J. (1990). Applications of expert systems in railroad maintenance: scheduling rail relays. Transportation Research Part A: General, 24(1), 39-52.
Marzouk, M., & Osama, A. (2015). Fuzzy approach for optimum replacement time of mixed infrastructures. Civil Engineering and Environmental Systems, 32(3), 269-280.
McCorkle, D. S., Bryden, K. M., & Carmichael, C. G. (2003). A new methodology for evolutionary optimization of energy systems. Computer Methods in Applied Mechanics and Engineering, 192(44-46), 5021-5036.
McGill, W. L., & Ayyub, B. M. (2007). Multicriteria security system performance assessment using fuzzy logic. The Journal of Defense Modeling and Simulation, 4(4), 356-376.
Melching, C. S., & Liebman, J. S. (1988). Allocating railroad maintenance funds by solving binary knapsack problems with precedence constraints. Transportation Research Part B: Methodological, 22(3), 181-194.
Murakami, K., & Turnquist, M. A. (1985). Dynamic model for scheduling maintenance of transportation facilities (No. 1030).
Office of Secretary of Defense for Installation and Environment, “Real Property Inventory Requirements Document,” http://www.acq.osd.mil/ie/download/rpir/rpir_appa.shtml
Oyama, T., & Miwa, M. (2006). Mathematical modeling analyses for obtaining an optimal railway track maintenance schedule. Japan Journal of Industrial and applied mathematics, 23(2), 207.
Pape, L., Giammarco, K., Colombi, J., Dagli, C., Kilicay-Ergin, N., & Rebovich, G. (2013). A fuzzy evaluation method for system of systems meta-architectures. Procedia Computer Science, 16, 245-254.
Reina, D. G., Ruiz, P., Ciobanu, R., Toral, S. L., Dorronsoro, B., & Dobre, C. (2016). A survey on the application of evolutionary algorithms for mobile multihop ad hoc network optimization problems. International Journal of Distributed Sensor Networks, 12(2), 2082496.
Sangkawelert, N., & Chaiyaratana, N. (2003, December). Diversity control in a multi-objective genetic algorithm. In Evolutionary Computation, 2003. CEC'03. The 2003 Congress on (Vol. 4, pp. 2704-2711). IEEE.
Shukla, A., Pandey, H. M., & Mehrotra, D. (2015, February). Comparative review of selection techniques in genetic algorithm. In Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), 2015 International Conference on (pp. 515-519). IEEE.
Uzarski, D. R., & Grussing, M. N. (2013). Beyond mandated track safety inspections using a mission-focused, knowledge-based approach. International Journal of Rail Transportation, 1(4), 218-236.
Uzarski, D. R., Plotkin, D. E., & Brown, D. G. (1988). The RAILER System for Maintenance Management of US Army Railroad Networks: RAILER 1 Description and Use (No. CERL-TR-M-88/18). CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL.
Wang, L., Xiong, S. W., Yang, J., & Fan, J. S. (2006, August). An improved elitist strategy multi-objective evolutionary algorithm. In Machine Learning and Cybernetics, 2006 International Conference on (pp. 2315-2319). IEEE.
Zeidler, D., Frey, S., Kompa, K. L., & Motzkus, M. (2001). Evolutionary algorithms and their application to optimal control studies. Physical Review A, 64(2), 023420.
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 103.