References
Asgharzadeh, A., Kazemi, M., and Kus, C. (2013). Analysis of the hybrid censored data from the logistic distribution. Journal of Probability and Statistical Science, 11, 183-198.
Akhtar, M. T., & Khan, A. A. (2014). Log-logistic distribution as a reliability model: a Bayesian analysis. American Journal of Mathematics and Statistics, 4, 162-170.
Balakrishnan, N. & Kundu, D. (2013). Hybrid censoring: models, inferential results and applications (with discussion). Computational Statistics and Data Analysis, 59, 166-209.
Banerjee, A. & Kundu, D. (2008). Inference based on type-II hybrid censored data from a Weibull distribution. IEEE Transactions on Reliability, 57, 369-378.
Barlow, R., Madansky, A., Proschan, F., and Scheuer, E. (1968). Statistical estimation procedures for the “Burn-in” process, Technometrics, 10, 51-62.
Bartholomew, D. (1963). The sampling distribution of an estimate arising in life testing. Technometrics, 5, 361-374.
Cohen, A. (1963). Progressively censored samples in life testing. Technometrics, 5, 327-329.
Chandrasekar, B., Childs, A., & Balakrishnan, N. (2004). Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring. Naval Research Logistic. 51, 994–1004.
Chen, S., & Bhattacharya, G. K. (1988). Exact confidence bounds for an exponential parameter under hybrid censoring. Communications in Statistics-Theory and Methods, 17, 1857-1870.
Childs, A., Chandrasekhar, B., Balakrishnan, N., & Kundu, D. (2003). Exact inference based on type-I and type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55, 319-330.
Chiodo, E., & Mazzanti, G. (2004). The log-logistic model for reliability characterization of power system components subjected to random stress. Speedam, Capri/Italy, 239-244.
Draper, N., & Guttman, I. (1987). Bayesian analysis of hybrid life tests with exponential failure times. Annals of the Institute of Statistical Mathematics, 39, 219-225.
Dube, S., Pradhan, B., & Kundu, D. (2010). Parameter estimation of the hybrid censored log normal distribution. Journal of Statistical Computation and Simulation, 81, 275-287.
Ebrahimi, N. (1992). Prediction intervals for future failures in the exponential distribution under hybrid censoring, IEEE Transactions on Reliability, 41, 127-132.
Epstein, B. (1954). Truncated life tests in the exponential case. Annals of Mathematical Statistics, 25, 555-564.
Fairbanks, K., Masson, R., and Dykstra, R. (1982). A confidence interval for an exponential parameter from a hybrid life test. Journal of the American Statistical Association, 77, 137-140.
Hyun, S., Lee, J., and Yearout, R. (2015). Analysis of the hybrid censored log-logistic distribution. Proceedings of the 4th annual world conference of the society for industrial and systems engineering, Fort Lauderdale, FL, 188-193.
Jeong, H.S., Park, J.I., and Yum, B.J. (1996). Development f (r,T) hybrid sampling plans for exponential lifetime distributions, Journal of Applied Statistics, 23, 601-607.
Jeong, H.S., Yum, B.J., (1995). Type-I censored life plans in the exponential case. Communications in Statistics-Simulation and Computation, 24, 187–205.
Kantam, R. R., Rao, G. S., & Sriram, B. (2006). An economic reliability test plan: log-logistic distribution. Journal of Applied Statistics, 33, 291-296.
Kundu, D. (2007). On hybrid censored Weibull distribution. Journal of Statistical Planning and Inference, 137, 2127-2142.
Kundu, D., & Joarder, A. (2006). Analysis of Type-II progressively hybrid censored data. Computational Statistics and Data Analysis, 50, 2509-2528.
Kundu, D. & Pradhan, B. (2009). Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring. Communications in Statistics-Theory and Methods, 38, 2030-2041.