References
Adams, K. (2001). Future warfare and the decline of human decision making parameters (Vol. 31).
Aliotta, J. (2022). Army, west point hit milestone with robotics project. U.S. Army. Retrieved from https://www.army.mil/ article/254202/army\_west\_point\_hit\_milestone\_with\_robotics\_project
Center, D. T. I. (2013). Afsim: The air force research laboratory’s approach to making M&S ubiquitous in the weapon system concept development process. CSIAC Journal, 1(4). doi: 10.21474/CSIAJ.2013.01.04.05
Cobb, A., Jalaian, B., Bastian, N., & Russell, S. (2021). Robust decision-making in the internet of battlefield things using bayesian neural networks. IEEE.
Hordyk, A. R., & Carruthers, T. R. (2018). A quantitative evaluation of a qualitative risk assessment framework: Examining the assumptions and predictions of the Productivity Susceptibility Analysis (PSA). PloS one, 13(6).
King, R., Churchill, E. F., & Tan, C. (2017). Designing with data: Improving the user experience with a/b testing. O’Reilly Media, Inc.
Letham, B., & Bakshy, E. (2019). Bayesian optimization for policy search via online offline experimentation. J. Mach. Learn. Res., 20, 145–1.
McGuinness, B., & Ebbage, L. (2002). Assessing human factors in command and control: Workload and situational awareness metrics. Defense Technical Information Center.
McKeon, A. (2022). Can artificial intelligence apply gaming to military strategy? northrop grumman. Retrieved from https://www.northropgrumman.com/what-we-do/can-artificial-intelligence-apply-gaming-to -military-strategy/
Pascoe, S., Bustamante, R., Wilcox, C., & Gibbs, M. (2009). Spatial fisheries management: a framework for multi-objective qualitative assessment. In (Vol. 52, pp. 130–138).
PEOSTRI. (2023). One semi-automated forces. Retrieved from https://www.peostri.army.mil/onesaf
Saaty, R. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. doi: 10.1016/0270-0255(87)90473-8
Shaneman, S., George, J., & Busart, C. (2022). Scaling distributed artificial intelligence/machine learning for decision domi- nance in all-domain operations. In Artificial intelligence and machine learning for multi-domain operations applications (Vol. IV (Vol. 12113, p. 19–32). SPIE.
Srivastava, A., & Thomson, S. (2009). Framework analysis: a qualitative methodology for applied policy research.
TechTarget. (2017). Modeling and simulation (m&s). Retrieved from https://www.techtarget.com/whatis/ definition/modeling-and-simulation-MS
USMA. (2023). Combat simulation lab. Retrieved from https://www.westpoint.edu/academics/academic-departments/systems-engineering/combat-simulation-lab
Violante, M. G., & Vezzetti, E. (2017). Kano qualitative vs quantitative approaches: An assessment framework for products attributes analysis. Computers in industry, 86, 15–25.
West, T., & Birkmire, B. (2020). Afsim: The air force research laboratory’s approach to making m&s ubiquitous in the weapon system concept development process – csiac. Retrieved from https://csiac.org/articles/ afsim-the-air-force-research-laboratorys-approach-to-making-ms-ubiquitous-in-the-weapon-system-concept-development-process/.