References
Army Publishing Directorate. (2018, October 4). The Conduct of Information Operations. Retrieved from armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/ARN13138_ATP%203-13x1%20FINAL%20Web%201.pdf
Barde, B., & Bainwad, A. (2017). An Overview of Topic Modeling and Tools. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), (pp. 745-750). Madurai, India.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. J. Mach. Learn. Res, 993–1022.
eBay, Inc. v. Bidder's Edge, Inc., C-99-21200RMW (US District Court for the Northern District of California May 24, 2000).
Global Times. (2021, February 5). PLA expels trespassing US warship from Xisha Islands. Retrieved from https://www.globaltimes.cn/page/202102/1215073.shtml
Gupta, R., Besacier, L., Dymetman, M., & Galle, M. (2019). Charecter-based NMT with Transformer. arXiv: 1911.04997.
Holm, R. R. (2017, March). Natural Language Processing of Online Propoganda as a Means of Passivley Monitoring an Adversarial Ideology. Retrieved from [Master's thesis, Naval Postgraduate School]: https://apps.dtic.mil/sti/pdfs/AD1045878.pdf
Hutchins, J. W., & Somers, H. L. (1992). An Introduction to Machine Translation. London: Academic Press.
Information Operations. (2012). In Joint Publication 3-13 (p. 87). Washington D.C.
Jones, T., & Doane, W. (2019). textmineR. Retrieved from https://www.rtextminer.com/
Mastro, O. S. (2021). The Precarious State of Cross-Strait Deterrence. Statement before the U.S. China Economic and Security Review Commission on "Deterring PRC Aggression Toward Taiwan.”
Mohammad, S. M., & Turney, P. D. (2010). Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon. Los Angeles: Association for Computational Linguistics.
Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a Word-Emotion Association Lexicon. 1308.6297.
Muthukadan, B. (2018). Selenium with Python. Retrieved from https://selenium-python.readthedocs.io/
Rees, B. (2018). Dismantling Contemporary Military Thinking and Reconstructing Patterns of Information: Thinking Deeper About Future War and Warfighting. Small Wars Journal, smallwarsjournal.com/jrnl/art/dismantling-contemporary-military-thinking-and-reconstructing-patterns-information.
Richardson, L. (2020). Beautiful Soup Documentation. Retrieved from https://www.crummy.com/software/BeautifulSoup/bs4/doc/
Rinker, T. (2019). sentimentr. Retrieved from https://github.com/trinker/sentimentr
Shumei, L., & Lin, W. (2021, February 18). Taiwan island's intensive military exercises a political show to cover its weakness: analysts. Retrieved from Global Times: https://www.globaltimes.cn/page/202102/1215898.shtml
Sievert, C., & Shirley, K. (2014). Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces. (pp. 63-70). Baltimore: Association for Computational Linguistics.
Smith, S. T., Kao, E. K., Mackin, E. D., Shah, D. C., Simek, O., & Rubin, D. B. (2021). Automatic detection of influential actors in disinformation networks. National Academy of Sciences (pp. 118-122). DOI: 10.1073/pnas.2011216118.
Xuanzun, L. (2020, December 22). PLA expels US warship trespassing South China Sea. Retrieved from Global Times: https://www.globaltimes.cn/page/202012/1210657.shtml
Xuanzun, L. (2021, January 27). Taiwan's display of new missile 'wrongly boosts courage of secessionists'. Retrieved from Global Times: https://www.globaltimes.cn/page/202101/1214177.shtml
Yin, J., & Wang, J. (2014). A dirichlet multinomial mixture model-based approach for short text clustering. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.